Std 10 : Maths(50) IMP QUESTIONS DAY 1

Date: 31/12/24 Time: 02 Hour

Section A

• Write the answer of the following questions. [Each carries 1 Mark]

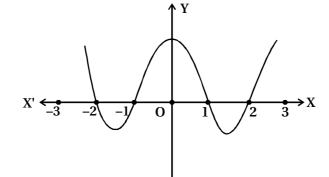
[3]

- 1. If HCF (x, y) = 1 then HCF $(x y, x + y) = \dots$
 - (A) 4

Chapters: 1&2

Total Marks: 29

- (B) 1 or 2
- (C) x or y
- (D) x + y or x y


- 2. LCM (a, 18) = 36 HCF (a, 18) = 2 then $a = \dots$.
 - (A) 2

(B) 3

(C) 4

- (D) 1
- 3. Numbers at zeros at the graph at p(x) between 0 and 4 are
 - (A) 3
 - (B) 6
 - (C) 2
 - (D) 4

5.

Section B

• Write the answer of the following questions. [Each carries 2 Marks]

[14]

4. Prove that the given is irrational : $7\sqrt{5}$

	(A)	(B)
i)	is not an irrational number.	(a) $3 + \sqrt{3}$
ii)	is not a rational number.	(b) $\sqrt{4}$
		(c) $\frac{4}{0}$

- Find a quadratic polynomial each with the given numbers as the sum and product of its zeroes respectively: $-\frac{1}{4}$, $\frac{1}{4}$
- 7. Find a quadratic polynomial each with the given numbers as the sum and product of its zeroes respectively: $\frac{1}{4}$, -1

		(A)		
	i)	If α , β and γ are zeroes of	(a) $\frac{-b}{c}$	
		a polynomial $p(x) = ax^3 + bx^2 + cx + d$ ($a \ne 0$) then their product $\alpha\beta\gamma = \dots$.		
8.	ii)	If α and β are zeroes of a quadratic polynomial $ax^2 + bx + c$, then $\frac{1}{\alpha} + \frac{1}{\beta} = \dots$.	(b) $\frac{-c}{a}$	
			(c) $\frac{-d}{a}$	

- 9. Find a quadratic polynomial each with the given numbers as the sum and product of its zeroes respectively : 0, $\sqrt{5}$
- 10. Find a quadratic polynomial each with the given numbers as the sum and product of its zeroes respectively: 4, 1

Section C

• Write the answer of the following questions. [Each carries 3 Marks]

[12]

- 11. Prove that $\sqrt{5}$ is irrational.
- 12. Find the zeroes of the following quadratic polynomial and verify the relationship between the zeroes and the coefficients: $6x^2 3 7x$
- 13. Find the zeroes of the following quadratic polynomial and verify the relationship between the zeroes and the coefficients: $t^2 15$
- 14. Find the zeroes of the following quadratic polynomial and verify the relationship between the zeroes and the coefficients: $x^2 2x 8$

Std 10 : Maths(50) IMP QUESTIONS DAY 1

Date: 31/12/24

Time: 02 Hour

Chapters: 1&2 Total Marks: 29

Section [A] : 1 Marks Questions						
No	Ans	Chap	Sec	Que	Universal_Queld	
1.	В	Chap 1	S5	2	QP24P11B1011_P1C1S5Q2	
2.	С	Chap 1	S5	5	QP24P11B1011_P1C1S5Q5	
3.	С	Chap 2	S5	2	QP24P11B1011_P1C2S5Q2	

	Section [B] : 2 Marks Questions					
No	Ans	Chap	Sec	Que	Universal_Queld	
4.	-	Chap 1	S3	3.2	QP24P11B1011_P1C1S3Q3.2	
5.	-	Chap 1	S11	3	QP24P11B1011_P1C1S11Q3	
6.	-	Chap 2	S3	2.5	QP24P11B1011_P1C2S3Q2.5	
7.	-	Chap 2	S3	2.1	QP24P11B1011_P1C2S3Q2.1	
8.	-	Chap 2	S11	1	QP24P11B1011_P1C2S11Q1	
9.	-	Chap 2	S3	2.3	QP24P11B1011_P1C2S3Q2.3	
10.	-	Chap 2	S3	2.6	QP24P11B1011_P1C2S3Q2.6	

	Section [C] : 3 Marks Questions					
No	Ans	Chap	Sec	Que	Universal_Queld	
11.	-	Chap 1	S3	1	QP24P11B1011_P1C1S3Q1	
12.	-	Chap 2	S3	1.3	QP24P11B1011_P1C2S3Q1.3	
13.	-	Chap 2	S3	1.5	QP24P11B1011_P1C2S3Q1.5	
14.	-	Chap 2	S3	1.1	QP24P11B1011_P1C2S3Q1.1	

Chapters: 1&2 Total Marks: 3 Std 10 : Maths(50) IMP QUESTIONS DAY 1

Date: 31/12/24 Time: 01 Hour

OMR ANSWER SHEET

Marks Identifier:	000000000000000000000000000000000000000				
A B C D 1. ① ① ① ① 2. ② ② ① ① ② 3. ② ② ② ②					

Chapters: 1&2 Total Marks: 3	IM:	Date: 31/12/24 Time: 01 Hour		
	(OMR ANSWER SHEE	Г	
Marks Identifier:	000000000000000000000000000000000000000			000000
A B C D 1. () () () () 2. () () () () 3. () () ()				

Std 10 : Maths(50) IMP QUESTIONS DAY 1

Date: 31/12/24 Time: 02 Hour

Section A

• Write the answer of the following questions. [Each carries 1 Mark]

[3]

- 1. If HCF (x, y) = 1 then HCF $(x y, x + y) = \dots$
 - (A) 4

Chapters: 1&2

Total Marks: 29

- (B) 1 or 2
- (C) x or y
- (D) x + y or x y

Ans. (B) 1 or 2

 \blacktriangleright Let HCF (x - y, x + y) = d

$$\therefore \frac{x-y}{d}$$
 or $\frac{x+y}{d}$

$$\therefore \frac{x-y}{d} = m \text{ or } \frac{x+y}{d} = n$$

$$\therefore x - y = md \dots (i) \text{ and } x + y = nd \dots (ii)$$

Adding (i) and (ii) we get

$$2x = md + nd$$

$$\therefore 2x = (m + n)d$$

Subtracting (i) from (ii), we get

$$2y = nd - md$$

$$\therefore 2y = (n - m)d$$

$$\therefore$$
 Now HCF $(x, y) = 1$

$$\therefore$$
 2 × HCF (x, y) = 2 × 1

$$\therefore$$
 HCF $((m+n) d, (n-m) d) = 2$

$$d \times \text{HCF} (m + n, n - m) = 2 \times 1$$

$$d = 2 \text{ or } 1$$

Hence, HCF (x - y, x + y) = d

and d = 2 or 1

- 2. LCM (a, 18) = 36 HCF (a, 18) = 2 then $a = \dots$.
 - (A) 2

(B) 3

(C) 4

(D) 1

Ans. (C) 4

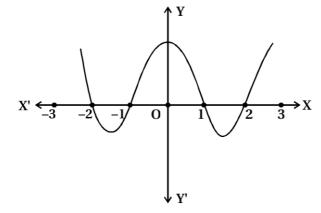
 \rightarrow $a \times 18 = LCM \times HCF$

$$a \times 18 = 36 \times 2$$

$$\therefore a = \frac{36 \times 2}{18}$$

= 4

3. Numbers at zeros at the graph at p(x) between 0 and 4 are



Ans. (C) 2

Numbers of zeros at the graph at p(x) between 0 and 4 are 2.

Section B

• Write the answer of the following questions. [Each carries 2 Marks]

4. Prove that the given is irrational : $7\sqrt{5}$

► Let us assume that $7\sqrt{5} = m$ is rational

$$\therefore \sqrt{5} = \frac{m}{7}$$

But $\sqrt{5}$ is irrational

So, this is contradiction

 \therefore $7\sqrt{5}$ is irrational

	(A)	(B)
i)	is not an irrational number.	(a) $3 + \sqrt{3}$
ii)	is not a rational number.	(b) √4
		(c) $\frac{4}{0}$

(i - b), (ii - a)

5.

- 6. Find a quadratic polynomial each with the given numbers as the sum and product of its zeroes respectively : $-\frac{1}{4}$, $\frac{1}{4}$
- Let α and β are the zeroes of the quadratic polynomial sum of the zeroes = $\alpha + \beta = -\frac{b}{a} = -\frac{1}{4}$ Product of the zeroes $\alpha\beta = \frac{c}{a} = \frac{1}{4}$

Required quadratic polynomial

$$= x^2 - (\alpha + \beta) x + \alpha \beta$$

$$= x^2 - \left(-\frac{1}{4}\right) x + \frac{1}{4}$$

$$= x^2 + \frac{x}{4} + \frac{1}{4}$$

$$=\frac{4x^2+x+1}{4}$$

[14]

$$= \frac{1}{4} (4x^2 + x + 1)$$

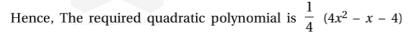
Hence, the required quadratic polynomial is $\frac{1}{4}$ (4x² + x + 1)

- 7. Find a quadratic polynomial each with the given numbers as the sum and product of its zeroes respectively: $\frac{1}{4}$, -1
- \blacktriangleright Let α and β are the zeroes of the quadratic polynomial.

$$\therefore$$
 Sum of the zeroes = $\alpha + \beta = -\frac{b}{a} = \frac{1}{4}$

and product of the zeroes $\alpha\beta = \frac{c}{a} = -1$

Required quadratic polynomial = $x^2 - (\alpha + \beta) x + \alpha B$


$$= x^{2} - \left(\frac{1}{4}\right) x + (-1)$$

$$= x^{2} - \frac{x}{4} - 1$$

$$= \frac{x^{2}}{1} - \frac{x}{4} - \frac{1}{1}$$

$$= \frac{4x^{2} - x - 4}{4}$$

$$= \frac{1}{4} (4x^{2} - x - 4)$$

		(A)		
	i)	If α , β and γ are zeroes of	(a) $\frac{-b}{c}$	
		a polynomial		
		$p(x) = ax^3 + bx^2 + cx + d$		
		$(a \neq 0)$ then their product		
		$\alpha\beta\gamma = \dots$.		
8.	ii)	If α and β are zeroes of a	(b) $\frac{-c}{a}$	
		quadratic polynomial	u	
		$ax^2 + bx + c$, then $\frac{1}{\alpha} + \frac{1}{\beta} = \dots$		
			(c) $\frac{-d}{a}$	

- (i c), (ii a)
- 9. Find a quadratic polynomial each with the given numbers as the sum and product of its zeroes respectively: $0, \sqrt{5}$
- \blacktriangleright Let α and β are the zeroes of quadratic equation.

Sum of the zeroes = $\alpha + \beta = -\frac{b}{a} = 0$

Product of the zeroes = $\alpha\beta = \frac{c}{a} = \sqrt{5}$

.: Required quadratic polynomial

$$= x^2 - (\alpha + \beta)x + \alpha\beta$$

$$= x^2 - (0) x + (\sqrt{5})$$

$$= x^2 - (0)x + \sqrt{5}$$

$$= x^2 + \sqrt{5}$$

Hence, The required quadratic polynomial is $x^2 + \sqrt{5}$

- 10. Find a quadratic polynomial each with the given numbers as the sum and product of its zeroes respectively: 4, 1
- \triangleright Let α and β are the zeroes of the quadratic polynomial.

Sum of the zeroes =
$$\alpha + \beta = -\frac{b}{a} = 4$$

Product of the zeroes =
$$\alpha\beta = \frac{c}{a} = 1$$

:. Required quadratic polynomial

$$= x^2 - (\alpha + \beta) x + \alpha \beta$$

$$= x^2 - 4x + 1$$

Hence, the required quadratic polynomial is $x^2 - 4x + 1$

Section C

• Write the answer of the following questions. [Each carries 3 Marks]

[12]

- 11. Prove that $\sqrt{5}$ is irrational.
- ► Let us assume, to the contrary that $\sqrt{5}$ is rational.

That is, we can find coprime a and b ($b \ne 0$) such that

$$\sqrt{5} = \frac{a}{b}$$

$$\therefore a = \sqrt{5}b$$

$$\therefore a^2 = 5b^2$$
 (: squaring both sides)

$$\therefore 5|a^2$$
 (a^2 divides by 5)

$$\therefore$$
 5|a (a divides by 5)

Let
$$a = 5a_1$$
, $a_1 \in \mathbb{N}$

$$\therefore 25a_1^2 = a^2 = 5b^2$$

$$\therefore b^2 = 5a_1^2$$

$$\therefore$$
 5| b^2 (b^2 divides by 5)

$$\therefore$$
 5|b (b divides by 5)

Thus 5|a and 5|b (a and b divide by 5)

But this contradicts the fact that a and b have no common factor other than 1.


So, we conclude that $\sqrt{5}$ is irrational.

12. Find the zeroes of the following quadratic polynomial and verify the relationship between the zeroes

and the coefficients : $6x^2 - 3 - 7x$

➤ \therefore 6x² - 7x - 3 (Arrang in decending power of x)

Let
$$p(x) = 6x^2 - 7x - 3$$

= $6x^2 - (9 - 2) x - 3$
= $6x^2 - 9x + 2x - 3$
= $3x(2x - 3) + 1(2x - 3)$

ightharpoonup To find the zeroes of p(x), we have p(x) = 0

$$\therefore 2x - 3 = 0$$

$$\therefore 2x = 3$$

$$\therefore x = \frac{3}{2}$$

$$3x + 1 = 0$$

$$\therefore 3x = -1$$

$$\therefore x = \frac{-1}{3}$$

Hence, $\frac{3}{2}$ and $-\frac{1}{3}$ are the zeroes of the given polynomial $6x^2 + 7x - 3$.

 $p(x) = 6x^2 - 7x - 3$ comparing with $ax^2 + bx + c$ we get a = 6, b = -7, c = -3

Sum of the zeroes
$$=$$
 $\left(\frac{3}{2}\right) + \left(-\frac{1}{3}\right) = \frac{-(-7)}{6} = \frac{-b}{a} = -\frac{\text{(coefficient of } x)}{\text{coefficient of } x^2}$

Product of the zero = $\frac{3}{2} \times \frac{-1}{3} = \frac{-3}{6} = \frac{c}{a} = \frac{\text{constant term}}{\text{coefficient of } x^2}$

13. Find the zeroes of the following quadratic polynomial and verify the relationship between the zeroes and the coefficients: $t^2 - 15$

Let
$$p(t) = t^2 - 15$$

= $(t)^2 - (\sqrt{15})^2$
= $(t - \sqrt{15})(t + \sqrt{15})$

 \blacktriangleright To find the zeroes of p(t) we take p(t) = 0.

$$p(t) = \left(t - \sqrt{15}\right) \left(t + \sqrt{15}\right)$$

$$\therefore \ 0 = \left(t - \sqrt{15}\right) \left(t + \sqrt{15}\right)$$

$$\therefore t - \sqrt{15} = 0 \text{ or } t + \sqrt{15} = 0$$

$$\therefore t = \sqrt{15} \text{ or } t = -\sqrt{15}$$

Hence, $\sqrt{15}$ and $-\sqrt{15}$ are the zeroes of $t^2 - 15$.

► $p(t) = t^2 - 15$ comparing with $ax^2 + bx + c$, we get

$$a = 1$$
, $b = 0$, $c = -15$

Sum of the zeroes = $(\sqrt{15}) + (-\sqrt{15}) = 0$

$$= \frac{-(0)}{1} = -\frac{b}{a} = -\frac{\text{(coefficient of } t)}{\text{coefficient of } t^2}$$

► Product of the zeroes =
$$(\sqrt{15}) \times (-\sqrt{15}) = -15$$

$$= \frac{-15}{1} = \frac{c}{a} = \frac{\text{constant term}}{\text{coefficient of } t^2}$$

14. Find the zeroes of the following quadratic polynomial and verify the relationship between the zeroes and the coefficients: $x^2 - 2x - 8$

Let
$$p(x) = x^2 - 2x - 8$$

 $= x^2 - (4 - 2)x - 8$
 $= x^2 - 4x + 2x - 8$
 $= x(x - 4) + 2(x - 4)$
 $= (x - 4) (x + 2)$

 \blacktriangleright To find the zeroes of p(x) we take p(x) = 0.

$$p(x) = (x - 4) (x + 2)$$

$$0 = (x - 4) (x + 2)$$

$$\therefore x - 4 = 0$$

$$\therefore x - 4 = 0$$

$$\therefore x - 4 = 0$$

Hence, 4 and -2 are zeroes of the polynomial $x^2 - 2x - 8$.

► Compare
$$p(x) = x^2 - 2x - 8$$
 to $ax^2 + bx + c$, $a = 1$, $b = -2$, $c = -8$

Sum of the zeroes = (4) + (-2) = +2 =
$$-\frac{-2}{1}$$
 = $-\frac{b}{a}$
= $-\frac{\text{coefficent of } x}{\text{coefficient of } x^2}$

Product of the zeroes = (4) × (-2) = -8
=
$$\frac{-8}{1} = \frac{c}{a} = \frac{\text{constant term}}{\text{coefficient of } x^2}$$