OPEN STUDENT FOUNDATION STD 10: MATHS

IMPORTANT QUESTION DAY 5

Section A

• Write the answer of the following questions. [Each carries 4 Marks]

[48]

Date: 22/02/24

1. S and T are points on sides PR and QR of Δ PQR such that \angle P = \angle RTS. Show that Δ RPQ ~ Δ RTS.

CHAPTER: 6

2. In Figure, $\frac{QR}{QS} = \frac{QT}{PR}$ and $\angle 1 = \angle 2$. Show that \triangle PQS ~ \triangle TQR.

- 3. E is a point on the side AD produced of a parallelogram ABCD and BE intersects CD at E Show that \triangle ABE \sim \triangle CFB.
- 4. CD and GH are respectively the bisectors of \angle ACB and \angle EGF such that D and H lie on sides AB and FE of \triangle ABC and \triangle EFG respectively. If \triangle ABC \sim \triangle FEG, show that :
 - (i) $\frac{\text{CD}}{\text{GH}} = \frac{\text{AC}}{\text{FG}}$
 - (ii) Δ DCB \sim Δ HGE
 - (iii) Δ DCA ~ Δ HGF

- 5. Sides AB and AC and median AD of a triangle ABC are respectively proportional to sides PQ and PR and median PM of another triangle PQR. Show that \triangle ABC \sim \triangle PQR.
- 6. If AD and PM are medians of triangles ABC and PQR, respectively where Δ ABC ~ Δ PQR, prove that $\frac{AB}{PQ} = \frac{AD}{PM}$
- 7. The diagonals of a quadrilateral ABCD intersect each other at the point O such that $\frac{AO}{BO} = \frac{CO}{DO}$ Show that ABCD is a trapezium.
- 8. In Figure, A, B and C are points on OP, OQ and OR respectively such that AB \parallel PQ and AC \parallel PR. Show that BC \parallel QR.

AJAY SIR: 9033642751

9. In Figure, DE \parallel OQ and DF \parallel OR. Show that EF \parallel QR.

10. In figure, If DE || AC and DF || AE prove that $\frac{BF}{FE} = \frac{BE}{EC}$.

11. In figure (i) and (ii), DE || BC. Find EC in (i) and AD in (ii).

- (i) Find EC (ii) Find AD.
- 12. A vertical pole of length 6 m casts a shadow 4 m long on the ground and at the same time a tower casts a shadow 28 m long. Find the height of the tower.

OPEN STUDENT FOUNDATION

STD 10: MATHS

IMPORTANT QUESTION DAY 5

Section A

• Write the answer of the following questions. [Each carries 4 Marks]

[48]

Date: 22/02/24

1. S and T are points on sides PR and QR of \triangle PQR such that \angle P = \angle RTS. Show that \triangle RPQ ~ \triangle RTS.

► In \triangle RPQ and \triangle RTS,

CHAPTER: 6

$$\angle RPQ = \angle RTS$$

(given)

(common angle)

:. Using AA similarity rule

 Δ RPQ ~ Δ RTS.

2. In Figure, $\frac{QR}{QS} = \frac{QT}{PR}$ and $\angle 1 = \angle 2$. Show that \triangle PQS ~ \triangle TQR.

- ► In \triangle PQR $\angle 1 = \angle 2$ (given)
 - :. PR = QP(i) (opposite side of equal angle)

(given)

$$\therefore \frac{QR}{QS} = \frac{QT}{QP}$$

....(ii)

► In \triangle PQS and \triangle TQR,

$$\frac{QR}{QS} = \frac{QT}{QP}$$

$$\frac{QS}{QR} = \frac{QP}{QT}$$

....(iii)

- $\therefore \angle SQP = \angle RQT = \angle 1$
- .. Using SAS similarity rule Δ PQS \sim Δ TQR.
- 3. E is a point on the side AD produced of a parallelogram ABCD and BE intersects CD at F. Show that Δ ABE \sim Δ CFB.

$$\angle BAE = \angle FCB$$

Opposite angle of \Box^m are equation)

AB || CD and BE is transversal

$$\angle AEB = \angle CBF$$

- From (i) and (ii) \triangle ABE \sim \triangle CFB, we have (AA similarity)
- 4. CD and GH are respectively the bisectors of \angle ACB and \angle EGF such that D and H lie on sides AB and FE of \triangle ABC and \triangle EFG respectively. If \triangle ABC \sim \triangle FEG, show that :

(i)
$$\frac{\text{CD}}{\text{GH}} = \frac{\text{AC}}{\text{FG}}$$

- (ii) Δ DCB \sim Δ HGE
- (iii) Δ DCA ~ Δ HGF

- $\qquad \qquad \textbf{(i)} \quad \frac{\text{CD}}{\text{GH}} = \frac{\text{AC}}{\text{FG}}$
 - ► In \triangle ACD and \triangle FGH,

$$\triangle$$
 ABC \sim \triangle FGE \therefore \angle A = \angle F

and
$$\angle C = \angle G$$

➤ From (i) and (ii) (AA similarity)

$$\Delta$$
 ACD ~ Δ FGH.

$$\therefore \frac{CD}{GH} = \frac{AC}{FG}$$
 (In a similar triangles, the corresponding sides are in proportional.)

- (ii) \triangle DCB \sim \triangle HGE
- \blacktriangleright \triangle ABC \sim \triangle FEG (given)

Again Δ ABC ~ Δ FEG

- ∴ ∠ACB = ∠FGE
- $\therefore \frac{1}{2} \angle ACB = \frac{1}{2} \angle FGE$
- ∴ ∠ DCB = ∠HGE(ii)
- ➤ From (i) and (ii) Δ DCB ~ Δ HGE (AA similarity)

(iii) Δ DCA ~ Δ HGF

➤ Δ ABC ~ Δ FEG

Again Δ ABC ~ Δ FEG

$$\therefore \frac{1}{2} \angle ACB = \frac{1}{2} \angle FGE$$

$$\angle$$
DCA \cong \angle HGF(ii)

From (i) and (ii)

$$\Delta$$
 DCA $\sim \Delta$ HGF (AA similarity)

5. Sides AB and AC and median AD of a triangle ABC are respectively proportional to sides PQ and PR and median PM of another triangle PQR. Show that Δ ABC \sim Δ PQR.

Solution : We have two \triangle ABC and \triangle PQR such that AD and PM are medians corresponding to BC and QR respectively.

Produce AD up to point E such that AD = DE and similar produce PM up to N such that PM = MN. Join EC and NR.

In \triangle ADC and \triangle EDB,

$$DC = DB.$$
 (D is midpoint by BC)

$$AD = DE$$
 (construction)

 \therefore \angle ADC = \angle BDE (verticle opposite angle)

$$\therefore$$
 Δ ADC \cong ΔEDB (By S.A.S. similarity)

$$\therefore$$
 AC \cong EB... (i) (by C.P.C.T.)

Similarly we can prove Δ PMR $\cong \Delta$ NMQ

$$\therefore PR = NQ \qquad \qquad \dots (ii) (CPCT)$$

Now,
$$\frac{AB}{PO} = \frac{AC}{PR} = \frac{AD}{PM}$$

$$\therefore \frac{AB}{PQ} = \frac{EB}{NQ} = \frac{AD}{PM}$$
 (From (i) and (ii))

$$\therefore \frac{AB}{PQ} = \frac{EB}{NQ} = \frac{AD}{PM} = \frac{2AD}{2PM} = \frac{AE}{PN}$$

$$\therefore \Delta ABE \sim \Delta PQN$$

(SSS similarity)

$$\therefore \angle ABE = \angle PQN$$

(C. P. C. Y)

....(iii)

Similarly we can prove
$$\angle 5 = \angle 6$$

....(iv)

$$\angle 3 + \angle 5 = \angle 4 + \angle 6$$

$$\frac{AB}{PO} = \frac{AC}{PR}$$
 and $\angle A = \angle P$

In \triangle ABC and \triangle PQR,

 \therefore SAS similarity \triangle ABC \sim \triangle PQR.

6. If AD and PM are medians of triangles ABC and PQR, respectively where Δ ABC ~ Δ PQR, prove that AB AD

$$\frac{AB}{PQ} = \frac{AD}{PM}$$

We have \triangle ABC \sim \triangle PQR such that AD and PM are the median corresponding to the sides BC and QR respectively and the corresponding sides of similar triangles are proportional.

$$\therefore \frac{AB}{PQ} = \frac{BC}{QR} = \frac{AC}{PR} \qquad(i)$$

Corresponding Angle are also equal in two similar triangles.

$$\angle A = \angle P$$
, $\angle B = \angle Q$, $\angle C = \angle R$

➤ Since AD and PM are medians.

$$\therefore$$
 BC = 2BD and QR = 2QM

From (i)

$$\therefore \frac{AB}{PQ} = \frac{2BD}{2QM} = \frac{BD}{QM}$$

And
$$\angle B = \angle Q \Rightarrow \angle ABD = \angle PQM$$

From (iii) and (iv) we have

$$\Delta$$
 ABD ~ Δ PQM

Their corresponding sides are proportional

$$\frac{AB}{AB} = \frac{AD}{AB}$$

The diagonals of a quadrilateral ABCD intersect each other at the point O such that $\frac{AO}{BO} = \frac{CO}{DO}$ Show 7. that ABCD is a trapezium.

- We have trapezium ABCD in which diagonals AC and BD Intersect each other at O such that.

$$\therefore \frac{AO}{BO} = \frac{CO}{DO} \text{ (given)}$$

$$\therefore \frac{AO}{CO} = \frac{BO}{DO}$$

In Δ ADB Draw the EO || AB such that A–E–D and A–O–C.

$$\therefore \frac{EA}{DE} = \frac{BO}{DO} \qquad(i)$$

But
$$\frac{AO}{CO} = \frac{BO}{DO}$$
(ii) (given)

From (i) and (ii)

$$\frac{EA}{DE} = \frac{BO}{DO} = \frac{AO}{CO}$$

So in \triangle ADB, E \in AB and O \in AC (using converse of basic Proportionality theorem)

OE || DC and OE || AB

- :. ABCD is a trapezium.
- 8. In Figure, A, B and C are points on OP, OQ and OR respectively such that AB || PQ and AC || PR. Show that BC || QR.

In \triangle OPQ AB \parallel PQ (given)

$$\therefore \frac{OA}{AP} = \frac{OB}{BQ} \dots (i) \text{ (Basic proportionality Theorem)}$$

In ∆ OPR AC || PR (given)

$$\therefore \frac{OA}{AP} = \frac{OC}{CR} \dots (ii) \text{ (Basic proportionality Theorem)}$$

From (i) and (ii) $\frac{OB}{BQ} = \frac{OA}{AP} = \frac{OC}{CR}$ OB OC

$$\therefore \overline{BQ} = \overline{CR}$$

► In \triangle OQR, B \in OQ, C \in OR

and
$$\frac{OB}{BQ} = \frac{OC}{CR}$$

Point B and C divided sides OQ and OR in the same ratio.

- ∴ BC || QR (Basic proportionality Theorem)
- 9. In Figure, DE \parallel OQ and DF \parallel OR. Show that EF \parallel QR.

➤ In Δ POQ DE || OQ

$$\therefore \frac{PE}{EQ} = \frac{PD}{DO}$$
(i) (Basic proportionality Theorem)

➤ In △ POR DF || OR

$$\therefore \frac{PD}{DO} = \frac{PF}{FR} \dots (ii) \text{ (Basic proportionality Theorem)}$$

From (i) and (ii) $\frac{PE}{EQ} = \frac{PD}{DO} = \frac{PF}{FR}$

$$\therefore \frac{PE}{EQ} = \frac{PF}{FR}$$

Similarly In Δ POR in which we get EF \parallel QR.

$$\therefore \frac{PE}{EQ} = \frac{PE}{FR}$$

E and F are dividing the PQ and PR in same ratio.

- ∴ EF || QR (Basic proportionality Theorem)
- 10. In figure, If DE || AC and DF || AE prove that $\frac{BF}{FE} = \frac{BE}{EC}$.

► In \triangle ABC DE || AC (given)

$$\therefore \frac{BD}{DA} = \frac{BE}{EC}$$
(i) (Basic proportionality Theorem)

➤ Δ ABE મi DF || AE (given)

From (i) and (ii),

$$\frac{BF}{FE} = \frac{BE}{EC}$$

11. In figure (i) and (ii), DE \parallel BC. Find EC in (i) and AD in (ii).

- (i) Find EC (ii) Find AD.
- In figure DE || BC |

$$\therefore \frac{AD}{DB} = \frac{AE}{EC}$$

$$\therefore \quad \frac{AD}{DB} = \frac{AE}{EC}$$

$$\therefore \ \frac{1.5}{3} = \frac{1}{EC}$$

$$\therefore \frac{1.5}{3} = \frac{1}{EC}$$

$$\therefore \frac{AD}{7.2} = \frac{1.8}{5.4}$$

$$\therefore$$
 EC \times 1.5 = 3

$$\therefore EC \times 1.5 = 3 \qquad \qquad \therefore AD \times 5.4 = 7.2 \times 1.8$$

$$\therefore EC = \frac{3}{1.5}$$

$$\therefore EC = \frac{3}{1.5} \qquad \qquad \therefore AD = \frac{7.2 \times 1.8}{5.4}$$

$$\therefore EC = 2 cm \qquad \qquad \therefore AD = \frac{18}{10} \times \frac{72}{10} \times \frac{10}{54}$$

$$\therefore AD = 2.4$$

12. A vertical pole of length 6 m casts a shadow 4 m long on the ground and at the same time a tower casts a shadow 28 m long. Find the height of the tower.

>

In \triangle ABC and \triangle DEF,

Length of pole AB = 6 m

Length of shadow of pole BC = 4 m

Length of shadow of tower EF = 28 m

Suppose length of tower DE = h m

In \triangle ABC and \triangle DEF we have,

$$\angle B = \angle E = 90^{\circ}$$

 $\angle A = \angle D$ (: Angular elevation of the sun same time)

Using AA criterion of similarity we have

 Δ ABC ~ Δ DEF

Theirs sides are proportional

$$\therefore \frac{AB}{DE} = \frac{BC}{EF}$$

$$\therefore \frac{6}{h} = \frac{4}{28}$$

$$\frac{6\times28}{4}=h=42\text{ m}$$

Thus the required height of the tower is 42 m.

