CHAPTER 14

OPEN STUDENT FOUNDATION Physics (Class 12) PRACTICE SHEET DAY 14

Section A

Write the answer of the following questions. [Each carries 1 Mark]

[10]

Date: 27/02/24

- 1. Suppose a pure Si crystal has 5×10^{28} atoms m⁻³. It is doped by 1 ppm concentration of pentavalent As. Calculate the number of electrons and holes. Given that, $n_i = 1.5 \times 10^{16}$ m⁻³
- 2. Differentiate between P-type and N-type semiconductor (any four).
- 3. The number of silicon atoms per m³ is 5×10^{28} . This is doped simultaneously with 5×10^{22} atoms per m³ of Arsenic and 5×10^{20} per m³ of atoms of Indium. Calculate the number of electrons and holes. Given that $n_i = 1.5 \times 10^{16}$ m⁻³. Is the material n-type or p-type?
- 4. Explain half wave rectifier with necessary circuit diagram. Draw the graphs of input and output voltage versus time.
- 5. Draw the circuit diagram of a full-wave rectifier. Explain full-wave rectification in brief. Also draw input-output waveforms.
- 6. Write briefly on *n*-type semiconductor.
- 7. When is the p-n junction called reverse bias and explain the change in p-n junction from this type of connection.
- 8. Write briefly on *p*-type semiconductor.
- When and why the p-n junction is called a forward bias? and describe the changes at such bias.
- 10. Give a chemical classification of semiconductors and write examples of each.

CHAPTER 14

OPEN STUDENT FOUNDATION Physics (Class 12) PRACTICE SHEET DAY 14

Date: 27/02/24

Section [A] : 1 Marks Questions					
No	Ans	Chap	Sec	Que	Universal_Queld
1.	-	Chap 14	S8	1	QP23P11B1211_P2C14S8Q1
2.	-	Chap 14	S8	3	QP23P11B1211_P2C14S8Q3
3.	-	Chap 14	S8	5	QP23P11B1211_P2C14S8Q5
4.	-	Chap 14	S8	6	QP23P11B1211_P2C14S8Q6
5.	-	Chap 14	S8	7	QP23P11B1211_P2C14S8Q7
6.	-	Chap 14	S9	17	QP23P11B1211_P2C14S9Q17
7.	-	Chap 14	S9	20	QP23P11B1211_P2C14S9Q20
8.	-	Chap 14	S10	17	QP23P11B1211_P2C14S10Q17
9.	-	Chap 14	S10	20	QP23P11B1211_P2C14S10Q20
10.	-	Chap 14	S10	12	QP23P11B1211_P2C14S10Q12

CHAPTER 14

OPEN STUDENT FOUNDATION Physics (Class 12) PRACTICE SHEET DAY 14

Section A

• Write the answer of the following questions. [Each carries 1 Mark]

[10]

Date: 27/02/24

- 1. Suppose a pure Si crystal has 5×10^{28} atoms m⁻³. It is doped by 1 ppm concentration of pentavalent As. Calculate the number of electrons and holes. Given that, $n_i = 1.5 \times 10^{16}$ m⁻³
- $n_h = 4.5 \times 10^{-9} \,\mathrm{m}^{-3}$
- 2. Differentiate between P-type and N-type semiconductor (any four).
- Try Yourself
- 3. The number of silicon atoms per m³ is 5×10^{28} . This is doped simultaneously with 5×10^{22} atoms per m³ of Arsenic and 5×10^{20} per m³ of atoms of Indium. Calculate the number of electrons and holes. Given that $n_i = 1.5 \times 10^{16}$ m⁻³. Is the material n-type or p-type?
- $n_h = 4.5 \times 10^9 \,\mathrm{m}^{-3}, \ n_\rho = 4.95 \times 10^{22} \,\mathrm{m}^{-3}$
- 4. Explain half wave rectifier with necessary circuit diagram. Draw the graphs of input and output voltage versus time.
- Try Yourself
- 5. Draw the circuit diagram of a full-wave rectifier. Explain full-wave rectification in brief. Also draw input-output waveforms.
- Try Yourself
- 6. Write briefly on *n*-type semiconductor.
- Try Yourself
- 7. When is the p-n junction called reverse bias and explain the change in p-n junction from this type of connection.
- Try Yourself
- 8. Write briefly on *p*-type semiconductor.
- Try Yourself
- 9. When and why the p-n junction is called a forward bias? and describe the changes at such bias.
- 10. Give a chemical classification of semiconductors and write examples of each.
- Try Yourself