Seat No.:	
-----------	--

Vasishtha Model Test Paper - 2025 (12)(E)

Standard Maths Paper - 2

Shree Vasishtha Vidhyalaya - Vav

Piyush Sojitra

[Time: 3 Hour]

[Marks: 80]

- **Instructions:**
 - 1) Write in a clear legible handwriting.
 - 2) This question paper has four Sections A, B, C & D and Question Numbers from 1 to 54
 - 3) All Sections are compulsory. General options are given.
 - 4) The numbers to the right represent the marks of the question.
 - 5) Draw neat diagrams wherever necessary.
 - 6) New sections should be written in a new page. Write the answers in numerical order.
 - 7) Calculator and smart watch are not allowed.

SECTION	-A
----------------	----

Answer the following questions as required(Que. 1 to 24) (1 mark each)

(24)

Choose the right option So that the statement become true (Que. No. 1 to 6)

(06)

1. HCF of 17, 23 and 29 is

(A) 1

(B) 2

(C)3

(D) 4

2. What do we get if the graph of $y = \alpha x^2 + bx + c$ gives an upward open curve?

(A) a < 0

(B)a = 0

(C)a > 0

3. The lines for the pair of equations 2x+3y-9=0 and 4x+6y-18=0 are _____.

(A) intersection

(B) coincident

(C) Parallel

(D) None of above

is quadratic equation.

(A) $x + \frac{1}{x} = 3$

(B) $x^2 - 4 = \frac{1}{x}$

(C) $x^2 + 3\sqrt{x} - 2 = 0$ (D) $x^2 + 2y - 1 = 0$

5. If 2k+1, 13 and 5k-3 are consecutive terms of an AP, then k =

(C) 17

(D) 13

6. All _____ are similar.

(A) Circle

(B) Rectangle

(C) Triangle

(D) None of above

- Choose the correct answers from the answer given in brackets and write the following statement as true: (Que. No. 7 to 12) [06]
 - 7. Co-ordinates of midpoint not line segment AB joining the points A (2a-b, b) and B (b. 2a-b) is [(a,a),(a,b),(b,b)]

8.	$\sqrt{3}\tan 30^{\circ} + \sqrt{2}\sin 45^{\circ} = $ (0,1,2)	1 she center O and a point o
9.	$\sqrt{3}\tan 30^{\circ} + \sqrt{2}\sin 45^{\circ} = $ (0,1,2) A tangent PQ at a point P of a circle of radius 5 cm. I	neets a line through the contest and Q_{\S_0}
		40 am 1/13 (III), 10
10	is the length of an arc. If the area of the sect	or of the circle is 150 cm and radius is 15 cm. tak_{e}

11. If the ratio of the surface areas of two spheres is 1:2 then the ratio of their volumes $_{i_{k}}$ $(2:\sqrt{2},1:2\sqrt{2},3:2\sqrt{2})$

12. $Z-\overline{X} = X(M-\overline{X}). (2,3,4]$

State whether the following statements are true or false (Que. No, 13 to 16)

[04]

13. IF $P(A) = (0.9)^2$ then $P(\overline{A}) = (0.1)^2$.

14. 27x+63y=45 and 63x+27y=135 then x+y=4

15. If one of the root of the quadratic polynomial $x^2 - 4x + m = 0$ is 3 then m = 3.

16. The distance of the point P(x,y) from the origin is $\sqrt{x^2-y^2}$

Answer the following questions in one sentence, word or numbers (Que. No. 17 to 20)

[04]

17. If the radius of a sphere is increased by 20% by what percentage will the volume of the sphere b_{θ} increased?

18. For any data, What is the sum of the deviations from the mean of each observation?

19. HCF(36,63) = 9 is given, find out LCM.

20. If one root of x^2 -2x-m = 0 is 5, what will be its second root?

Match following: (Que. No. 21 to 24)

(04)

A	В
21. Zeroes -x + 5	(a) 5, -5
22. Zeroes of x^2 -25	(b) -5
	(c) 5

A	В	
23. $-\cos^2 A - \sin^2 A$	(a) 1	
24. $\sec^2 A - \tan^2 A$	(b) 0	
	(c) -1	