Seat No.:				
Seat No				

Vasishtha Model Test Paper - 2025 (18)(E)

Basic Maths Paper - 2

Shree Vasishtha Vidhyalaya - Vav

Pivush Sojitra

[Time: 3 Hour]

[Marks: 80]

- **Instructions:**
 - 1) Write in a clear legible handwriting.
 - 2) This question paper has four Sections A, B, C & D and Question Numbers from 1 to 54
 - 3) All Sections are compulsory. General options are given.
 - 4) The numbers to the right represent the marks of the question.
 - 5) Draw neat diagrams wherever necessary.
 - 6) New sections should be written in a new page. Write the answers in numerical order.
 - 7) Calculator and smart watch are not allowed.

SECTION -A

Answer the following questions as required(Que. 1 to 24) (1 mark each)

(24)

Choose the right option So that the statement become true (Que. No. 1 to 6)

(06)

- 1. If $\frac{a_1}{a_2} = \frac{b_1}{b_2} = \frac{c_1}{c_2}$ in a pair of two variable linear equations, its graphical form is _____ (A) Intersecting lines
 - (B) Parallel lines
- (C) Coincident lines
- (D) None

2. If the roots of quadratic equation $ax^2 + bx + c = 0$, $a \neq 0$ are real and distinct then

- (A) b^2 -4ac < 0
- (B) $b^2 4ac = 0$ (C) $b^2 4ac > 0$
- (D) b^2 4ac $\neq 0$

- 3. For on AP the (n 2)th term is _____.
 - (A) a + (n-1) d
- (B) a + (n-3)d (C) a + nd

- (D) not any one
- 4. If A(0,6) and B(0,-2) then the distance between A & B is ______.
 - (A)6

(C)8

(D) 2

- $5. \quad \sqrt{1-\cos^2\theta} = \underline{\hspace{1cm}}$
 - (A) $\sec^2\theta$
- (B) $\sin^2\theta$
- $(C)\sin\theta$

(D) 0

6. Relation between the measures of central tendency is $Z = 3M - 2\overline{x}$, then $\frac{M - X}{Z - M}$

- (A)0
- $(B \frac{1}{2})$

(D) 2

	Choose the correct answers from the answer given in brackets and write the following statement an ${ m tr}_{ m Le}$
•	Choose the correct answers from the answer given in 22

(Que. No. 7 to 12)

(06)

- 7. $3 + \sqrt{16}$ is _____ a numbers [rational, irrational, negative integer]
- 8. α and β are Zeros of polynomial $ax^2 + bx + c = 0$, $a \neq 0$ then $\alpha \cdot \beta =$ [$\frac{c}{a}, \frac{-c}{a}, \frac{-b}{a}$]
- 9. Probability of a sure event is _____[0, 1, 2]
- 10. $\frac{1-\tan^2 45^0}{1+\tan^2 45^0} =$ ______. [0,1,2]
- 1 + tan 45
 11. A line intersecting a circle in two points is called a ______. [tangent, secant, chord]
- 12. For any information, Z-M=6 then $M-\overline{X}=$ _____.(2,3,12)

• State whether the following statements are true or false (Que. No, 13 to 16)

[04]

- 13. HCF(5,15) = 10.
- 14. Number of the zeros of the polynomial $p(x) = 5 x^2$ is 3
- 15. The graph of y=0 Shows the y-axis.
- 16. For any event A, P(A) is always greater than P(A')

• Answer the following questions in one sentence, word or numbers (Que.No. 17 to 20)

[04]

- 17. Write common difference of AP $\frac{1}{p}$, $\frac{1-p}{p}$, $\frac{1-2p}{p}$,
- 18. In a cyclic quadrilateral PQRS $\angle P \angle R = 40^{\circ}$, then find $\angle R$.
- 19. Find the probability that a number chosen at random from the natural numbers 1 to 100 is prime.
- 20. For given data, $\Sigma x_i = 405 \& \Sigma f_i = 27 \quad then find \, \overline{X}$.

• Match following:(Que. No. 21 to 24)

[04]

A	В			
21. Volume of cylinder	(a) $\pi r^2 h$			
22. Volume of cone	$(b)\frac{4}{3}\pi r^3$			
	(c) $\frac{1}{3}\pi r^2 h$			

A	В
23. Circumference ÷ diameter	(a) π
24. Area of circle ÷ Circumference of circle	(b) r
	(c) $\frac{r}{2}$