PAPER-4

SECTION - A

	DITOTZ
► Doa	as directed. (Q. 1 to 24) [1 Marks Each] (24)
• Cho	oose the correct option. (Q. 1 to 6)
(1)	By which number wehave to multiply the
(-)	equation $x + y = 5$ into equation (i) and $2x - 3y = 4$
	from equation to eliminate y?
	(A) 2 (B) $^{-2}$
	(C) $_{3}$ (D) $_{-3}$
(2)	The pair of equations $2x + 3y = 5$ and $4x + 6y = 15$
	has
	(A) A unique solution
	(B) The solution of pair of equations is infinitely
	(C) Excectly two solutions
	(D) No solution
(3)	
	(A) $a+20 d$ (B) $a-20 d$
	(C) $a+19d$ (D) $a-19d$
(4)	Distance is of point (x, y) to origin.
	(A) $\sqrt{x^2 + y^2}$ (B) $\sqrt{x^2 - y^2}$
E	(C) $x^2 + y^2$ (D) $x^2 - y^2$
· (5)	$\tan 45^{\circ} \cot 45^{\circ} = \underline{\hspace{1cm}}$
	(A) $\frac{1}{\sqrt{3}}$ (B) $\sqrt{3}$
	(C) 1 (D) 0
(6)	For any frequency distribution $Z-M = X(M-x)$

(A) 1	(B) 2	
(C) 3	(D) 4	
	the blanks. (Q. 7 to		
(7)	5 isnumber,	(rational, irrational, odd)	
(8)	∞ and B are Zero	oes of quadratic equatio	n
]	$P(x) = x^2 + x + 1$ then of	$\infty.\beta = \underline{\qquad} (0,1,2)$	
(9)	f value of θ is incre	eased then Value of $\cos \theta$ i	S
-	(increase, dec		
		touches / intersects in circle	e
	s points (1,0	0 = 60	
		requency distribution is 2.6)
1	then $y = \underline{\hspace{1cm}} (2$,4,8)	
	<i>x</i> i 1 2	3 4 5	
	fi 4 5	y 1 2	
(10)	El	41' · · · · · · · · · · · · · · · · · · ·	
	The probability of ge		
	a balance die $(\frac{1}{4}, \frac{1}{6},$	(6)	
. Writ	a the statements tru	e or false. (Q. 13 to 16)	
	The HCF of 15 and 51		
, ,		mial $P(x) = 7x - 5 \text{ is } -\frac{5}{7}$	
(15)	If $\frac{\mathbf{a}_1}{\mathbf{a}_2} = \frac{\mathbf{b}_1}{\mathbf{b}_2} = \frac{\mathbf{c}_1}{\mathbf{c}_2}$ then the	he pair of equations has no	
(10)	\overline{a}_2 \overline{b}_2 \overline{c}_2	11	
	Solutions.		
(16)	If the event is not j	produced then it is called	
	impossible event.		
11		17 (20)	
• Mat	ch the following. (Q.		
(17)	An arc of a circle ma	okes an	
(17)	angle of measure θ at of the circle state the	t the centre formula to $(a) \frac{1}{2} \times lr$	
de a	find the area of mino	r sector	
(18)	A circle has radius r	and the The $\pi r^2 \theta$	
	length of an arc is l. formula to find the ar	The rea of the (b) $\frac{\pi r^2 \theta}{360}$	
	sector from this is	$(c) \frac{\pi r \theta}{260}$	
i		300	
(19)	A C.S.A. of cylinder	B 1 .	
(19)	of 7 cm height	(a) $\frac{1}{3} \pi r^2 h$	
(20)	Volume of cone	(b) 44 r	
		(c) 2πr	
		(-)	
			_

- Solve the following. (Q. 21 to 24)
 - (21) Are the given numbers 1, 3, 9, 27, ... forms. an AP?
 - (22) write definition of tangent of a circle.
 - (23) write equation to find mean with assumed mean.
 - (24) find the probability of getting a head when a Coin is tossed once. Also find the probability of getting a tail.